organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Kanji Kubo,^a* Taisuke Matsumoto^b and Akira Mori^b

^aSchool of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan, and ^bInstitute for Materials Chemistry and Engineering, Kyushu University, Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan

Correspondence e-mail: kubo-k@hoku-iryo-u.ac.jp

Key indicators

Single-crystal X-ray study T = 123 K Mean σ (C–C) = 0.002 Å R factor = 0.019 wR factor = 0.047 Data-to-parameter ratio = 17.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2,7-Dibromo-2,4,6-cycloheptatrien-1-one (2,7-dibromotropone)

The title compound, $C_7H_4Br_2O$, has mirror symmetry perpendicular to the tropone ring, and forms a head-to-head association of two nearly parallel molecules. Intermolecular $\pi-\pi$, halogen-halogen and $C-H\cdots O$ interactions are observed in the crystal structure. Received 15 June 2005 Accepted 27 June 2005 Online 16 July 2005

Comment

Crystal engineering is the planning and construction of the structure and properties of crystalline materials by designing molecular building blocks (Steed & Atwood, 2000; Matsumoto et al., 2002). Various interactions such as dipole-dipole, van der Waals, hydrogen-bonding, π - π , halogen-halogen, C- $H \cdots \pi$ and $C - H \cdots O$ interactions have been used in crystal engineering, and the nature of halogen-halogen interactions in crystals has long been a matter of interest and debate (Desiraju & Parthasarathy, 1989). Aryl and aliphatic halides have been studied as building blocks for constructing crystal structures with halogen-halogen interactions (Karimov et al., 1998; Tanaka et al., 2000; Matsumoto et al., 2002), while troponoids have been an important building block for constructing liquid crystals (Kubo et al., 2002, 2004, 2005), ionophores (Mori et al., 1996; Yamamoto et al., 2003) and dyes (Takeshita et al., 1989; Kubo & Mori, 2001; Kubo et al., 2001). The troponoid system plays an important role in generating new properties in molecular assemblies. Many crystal structures of troponoids have a π - π interaction between intermolecular tropones (head-to-tail) to cancel the dipole of the troponoids (Kubo & Mori, 2001; Kubo et al., 2001). We now report the structure of the title compound, (I), a new molecular building block for constructing complicated molecular assemblies, with the aim of contributing to a deeper understanding of intermolecular halogen-halogen and C-H···O interactions.

In (I), there is a mirror passing through the C1–O1 bond axis and perpendicular to the tropone ring (Fig. 1). The sevenmembered ring is nearly planar; the respective deviations of each atom from the least squares plane A defined by atoms O1 and C1–C4 are -0.057 (1), 0.088 (2), 0.036 (1), -0.026 (1) and -0.009 (1) Å. The dihedral angle between the least-

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

Molecular structure of (I), showing 50% probability displacement ellipsoids. Unlabelled atoms are related by the symmetry operation x_i , $-y + \frac{1}{2}, z.$

squares planes A and B [defined by atoms C2, $C2^{i}$, Br1 and Br1ⁱ; symmetry code: (i) $x, -y + \frac{1}{2}, z$ is 9.9 (1)°. The C–C bond lengths of the seven-membered ring of (I) are similar to those of tropone (Barrow et al., 1973).

Intermolecular $\pi - \pi$ interaction between the tropone dimer planes (head-to-head) of (I) is observed. The $C2 \cdot \cdot \cdot C3^{ii}$ intermolecular distance between tropone planes is 3.490 (3) Å [symmetry code: (ii) x - 1, y, z], which is within the range associated with π - π interactions (3.3–3.8 Å; Prout *et al.*, 1973; Kubo *et al.*, 2001). The value is shorter than that [3.791 (5) Å] of the intermolecular (head-to-head) contact between the C1 atoms of 5-cyanotropolone (Kubo et al., 2001).

There is an intermolecular $Br \cdots Br$ interaction (Table 2). The Br1···Br1ⁱⁱⁱ distance is 3.4115 (3) Å [symmetry code: (iii) -x, -y, 2-z], which is shorter than the sum (3.72 Å) of the van der Waals radii of Br atoms (Desiraju & Parthasarathy, 1989), and shorter than the Br...Br distances in hexabromobenzene [3.564 (1) and 3.696 (1) Å; Baharie & Pawley, 1979]. There is also an intermolecular $C-H \cdots O$ hydrogen bond (Table 2). The $H \cdot \cdot \cdot O$ distance is similar to those of $[Hg(NO_3)_2]$ (18-crown-6)] (2.48 Å; Calleja & Steed, 2003) and 7,16-bis(1pyrenylmethyl)-1,4,10,13-tetraoxa-7,16-diazacyclooctadecane (2.58 Å; Kubo et al., 1997; Meadows et al., 2000). Thus, the crystal structure of (I) has intermolecular $\pi - \pi$, halogenhalogen and C-H···O interactions.

Experimental

Compound (I) was synthesized by bromination of tropone (Takeshita et al., 1993). Crystals of (I) were grown from a chloroform solution by slow evaporation.

from 1084

Crystal data

СЧР•О	$D = 2.416 \mathrm{Mg}\mathrm{m}^{-3}$		
$C_7 \Pi_4 D \Gamma_2 O$	$D_x = 2.410 \text{ Mg m}$		
$M_r = 263.92$	Mo $K\alpha$ radiation		
Monoclinic, $P2_1/m$	Cell parameters from 1		
a = 4.010 (1) Å	reflections		
b = 14.829(5) Å	$\theta = 3.3-27.5^{\circ}$		
c = 6.111(2) Å	$\mu = 11.12 \text{ mm}^{-1}$		
$\beta = 93.274 \ (2)^{\circ}$	T = 123.1 K		
$V = 362.8 (2) \text{ Å}^3$	Needle, yellow		
Z = 2	$0.13 \times 0.03 \times 0.02 \text{ mm}$		

h

Figure 2 Packing diagram of (I), viewed down the a axis.

Figure 3

Bromine-bromine and C-H···O interactions (indicated by broken lines) in (I).

Data collection

684 reflections with $F^2 > 2\sigma(F^2)$ Rigaku Saturn diffractometer ω scans $R_{\rm int} = 0.031$ $\theta_{\rm max} = 27.5^{\circ}$ Absorption correction: multi-scan $h = -5 \rightarrow 5$ (Jacobson, 1998) $T_{\min} = 0.606, T_{\max} = 0.801$ $k = -19 \rightarrow 19$ $l = -7 \rightarrow 7$ 4008 measured reflections 859 independent reflections Refinement $w = 1/[\sigma^2(F_o^2) + (0.0297P)^2]$ Refinement on F^2 + 0.107PR(F) = 0.019 $wR(F^2) = 0.047$ where $P = (F_o^2 + 2F_c^2)/3$ S = 1.04 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.64 \text{ e Å}$ 859 reflections $\Delta \rho_{\rm min} = -0.42 \text{ e } \text{\AA}^{-3}$ 50 parameters H-atom parameters constrained

Table 2

Selected geometric parameters (Å, °).

Br1-C2	1.903 (2)	C2-C3	1.350 (3)
O1-C1	1.223 (4)	C3-C4	1.425 (3)
C1-C2	1.474 (3)	C4-C4 ⁱ	1.352 (3)
Br1-C2-C1	111.8 (2)	$C2^{i}-C1-C2$	118.8 (2)
Br1-C2-C3	115.9 (2)	C2-C3-C4	129.9 (2)
O1-C1-C2	120.6 (1)	C3-C4-C4 ⁱ	127.9 (2)
C1-C2-C3	132.2 (2)		
O1-C1-C2-Br1	-9.0(4)	C1-C2-C3-C4	2.8 (4)
01-C1-C2-C3	169.1 (3)	C3-C2-C1-C2 ⁱ	-11.8(5)
Br1-C2-C3-C4	-179.2 (2)	$C2 - C3 - C4 - C4^{i}$	4.0 (4)

Symmetry code: (i) $x, \frac{1}{2} - y, z$.

Table 2

π - π , halogen-halogen and C-H···O interactions (Å, °) in (I).

$\begin{array}{c} C1 \cdots C4^{ii} \\ C2 \cdots C3^{ii} \end{array}$	3.540 3.490	$\begin{array}{ccc} (3) & C2 \cdot \cdot \\ (3) & Br1 \cdot \end{array}$	$\begin{array}{c} C2 \cdots C4^{ii} \\ Br1 \cdots Br1^{iii} \end{array}$	
$D-\mathrm{H}\cdots A$	<i>D</i> -H	$H \cdots A$	$D \cdots A$	D-H···A
$C4-H2\cdots O1^{iv}$	0.93	2.5132	3.170 (3)	128

Symmetry codes: (ii) x - 1, y, z; (iii) -x, -y, 2 - z; (iv) 1 + x, y, z - 1.

All H atoms were located at ideal positions (C-H = 0.93 Å) and constrained with $U_{iso}(H) = 1.2U_{eq}$ (parent atom).

Data collection: *CrystalClear* (Rigaku, 1999); cell refinement: *CrystalClear*; data reduction: *CrystalStructure* (Rigaku/MSC & Rigaku, 2004); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPIII* (Burnett & Johnson, 1996); software used to prepare material for publication: *CrystalStructure*.

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Baharie, E. & Pawley, G. S. (1979). Acta Cryst. A35, 233-235.
- Barrow, M. J., Mills, O. S. & Filippini, G. (1973). J. Chem. Soc. Chem. Commun. pp. 66–67.
- Burnett, M. N. & Johnson, C. K. (1996). *ORTEPIII*. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.

Calleja, M. & Steed, J. W. (2003). J. Chem. Crystallogr. 33, 609-612.

Desiraju, G. R. & Parthasarathy, R. (1989). J. Am. Chem. Soc. 111, 8725–8726. Jacobson, R. (1998). REQAB. Private communication to Rigaku Corporation.

- Karimov, Z., Talipov, S. A., Ibragimov, B. T., Tashmukhamedona, A. K., Stempnevskaya, I. A. & Aripov, T. F. (1998). *Kristallografiya*, 43, 478–481. Kubo, K., Kato, N. & Sakurai, T. (1997). *Acta Cryst.* C53, 132–134.
- Kubo, K. & Mori, A. (2001). Acta Cryst. E57, 0328-0329.
- Kubo, K., Mori, A., Ujiie, S. & Tschierske, C. (2004). J. Oleo Sci. 53, 575-579.
- Kubo, K., Mori, A., Ujiie, S. & Tschierske, C. (2005). J. Oleo Sci. 54, 179-183.
- Kubo, K., Sutoh, T., Mori, A. & Ujiie, S. (2002). Bull. Chem. Soc. Jpn, 75, 1353-1358
- Kubo, K., Tsujimoto, T. & Mori, A. (2001). Acta Cryst. E57, o225-o227.
- Kubo, K., Tsuruta, T. & Mori, A. (2001). Acta Cryst. E57, 0326-0327.
- Kubo, K. Yamamoto, E. & Mori, A. (2001). Acta Cryst. C57, 611-613.
- Matsumoto, A., Tanaka, T., Tsubouchi, T., Tashiro, K., Saragai, S. & Nakamoto, S. (2002). J. Am. Chem. Soc. 124, 8891–8902.
- Meadows, E. S., De Wall, S. L., Barbour, L. J., Fronczek, F. R., Kim, M.-S. & Gokel, G. W. (2000). J. Am. Chem. Soc. 122, 3325–3335.
- Mori, A., Kubo, K. & Takeshita, H. (1996). Coord. Chem. Rev. 148, 71-96.
- Prout, C. K., Orley, T. M., Tickle, I. J. & Wright, J. D. (1973). J. Chem. Soc. Perkin Trans. 2, pp. 523–527.
- Rigaku (1999). CrystalClear. Rigaku Corporation, 3-9-12 Akishima, Tokyo 196-8666, Japan.
- Rigaku/MSC & Rigaku (2004). CrystalStructure. Version 3.6.0. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA, and Rigaku Corporation, 3-9-12 Akishima, Tokyo 196-8666, Japan.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Steed, J. W. & Atwood, J. L. (2000). Supramol. Chem. pp. 389-462.
- Takeshita, H., Mori, A., Nagao, T. & Nagamura, T. (1989). Chem. Lett. 10, 1719–1722.
- Takeshita, H., Yin, B. Z., Kubo, K. & Mori, A. (1993). Bull. Chem. Soc. Jpn, 66, 3451–3455.
- Tanaka, K., Fujimoto, D. & Toda, F. (2000). *Tetrahedron Lett.* **41**, 6095–6099.
- Yamamoto, E., Kubo, K. & Mori, A. (2003). Bull. Chem. Soc. Jpn, 76, 627– 634.